Tissue engineered vascularized periosteal flap enriched with MSC/EPCs for the treatment of large bone defects in rats

نویسندگان

  • Christoph Nau
  • Dirk Henrich
  • Caroline Seebach
  • Katrin Schröder
  • John H. Barker
  • Ingo Marzi
  • Johannes Frank
چکیده

Vascularized periosteal flaps are used for complex cases if the reconstruction of large bone defects is necessary in modern trauma and orthopedic surgery. In this study, we combined this surgical procedure with β‑TCP scaffold and mesenchymal stem cells (MSCs) + endothelial progenitor cells (EPCs) as a tissue engineering approach to obtain optimum conditions for bone healing in rats. A critical size femoral defect was created in 80 rats allocated into 4 groups. Defects were treated according to the following protocol: i) vascularized periosteal flap alone; ⅱ) vascularized periosteal flap + β‑TCP scaffold; ⅲ) vascularized periosteal flap + β‑TCP scaffold + ligated vascular pedicle; and ⅳ) vascularized periosteal flap + β‑TCP scaffold + MSCs/EPCs. After 8 weeks, femur bones were extracted and analyzed for new bone formation, vascularization, proliferation and inflammatory processes and strength. Bone mineral density (BMD) and biomechanical stability at week 8 were highest in group 4 (flap + β‑TCP scaffold + MSCs/EPCs) compared to all the other groups. Stability was significantly higher in group 4 (flap + β‑TCP scaffold + MSCs/EPCs) in comparison to group 3 (ligated flap + β‑TCP scaffold). BMD was found to be significantly lower in group 3 (ligated flap + β‑TCP scaffold) compared to group 1 (flap) and group 4 (flap + β‑TCP scaffold + MSCs/EPCs). The highest density of blood vessels was observed in group 4 (flap + β‑TCP + MSCs/EPCs) and the values were significantly increased in comparison to group 3 (ligated flap), but not to group 1 (flap) and group 2 (flap + β‑TCP). The highest amounts of proliferating cells were observed in group 4 (flap + β‑TCP scaffold + MSC/EPCs). The percentage of proliferating cells was significantly higher in group 4 (flap + β‑TCP scaffold + MSCs/EPCs) in comparison to all the other groups after 8 weeks. Our data thus indicate that critical size defect healing could be improved if MSCs/EPCs are added to β-TCP scaffold in combination with a periosteal flap. Even after 8 weeks, the amount of proliferating cells was increased. The flap blood supply is essential for bone healing and the reduction of inflammatory processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bilateral Pediculated Palatal Periosteal Connective Tissue Flap for Coverage of Large Bone Grafts in the Anterior Maxillary Region

Introduction: Coverage of bone grafts is very important in reconstructive surgery. In edentulous alveolar ridges this coverage is particularly important for supporting dental prostheses. Here we present the case of a patient with a large deficient maxillary anterior region that was reconstructed with a bilateral palatal submucosal periosteal connective tissue flap: a soft tissue reserve for up...

متن کامل

Allogenic Bone Graft Enriched by Periosteal Stem Cell and Growth Factors for Osteogenesis in Critical Size Bone Defect in Rabbit Model: Histopathological and Radiological Evaluation

Background & Objective: This study aimed to investigate the effect of decellularized allogeneic bone graft enriched by periosteal stem cells (PSCs) and growth factors on the bone repair process in a rabbit model, which could be used in many orthopedic procedures. Methods: In this experimental study, a critical size defect (CSD) (10 mm) was created in the ...

متن کامل

Experimental study on healing of long bone defects treated with fibrin membrane enriched with platelet growth factors and periosteal mesenchymal stem cells in rabbit: radiographical and histopathological evaluations

The present study was designed to evaluate the effects of platelet growth factors and periosteal mesenchymal stem cells on bone healing process, radiographically. Forty male White New Zealand rabbits in five equal groups were used in this study. A 2 mm full thickness bone defect was made in left radial bone of each animal. In group A (control) the defect was left with no medical intervention. I...

متن کامل

Tissue Engineered Vascularized Bone Formation Using in vivo Implanted Osteoblast-Polyglycolic acid Scaffold

Repair of skeletal defects with vascularized bone grafts has many advantages over non-vascularized free grafts, but the availability of these grafts is extremely limited. This study was designed to determine whether new vascularized bone could be engineered by transplantation of osteoblasts around existing vascular pedicles using biodegradable, synthetic polymer as a cell delivery vehicle. Cell...

متن کامل

Improved viability of random pattern skin flaps with the use of bone marrow mesenchymal-derived stem cells and chicken embryo extract

Objective(s): Covering tissue defects using skin flaps is a basic surgical strategy for plastic and reconstructive surgery. The aim of this study was to evaluate the effects of chicken embryo extract (CEE) and bone marrow derived mesenchymal stem cells (BM-MSCs) on random skin flap survival (RSF) in rats. Using chicken embryo extract can be an ideal environment for the growth and proliferation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2017